
BACHELORARBEIT

Implementation and Evaluation of a
Support Vector Machine on an 8-bit

Microcontroller

ausgeführt zum Zwecke der Erlangung des akademischen Grades
eines Bachelor of Science

unter der Leitung von

Univ.Ass. Dipl.-Ing. Dr.techn. Wilfried Elmenreich

Institut für Technische Informatik
Fakultät für Informatik

Technische Universität Wien

durchgeführt von

Thomas Nowak

Matr.-Nr. 0425201

Sturzgasse 1C/10, A-1140 Wien

Wien, im Juli 2008 .

Implementation and Evaluation of a
Support Vector Machine on an 8-bit

Microcontroller

Support Vector Machines (SVMs) can be used on small microcontroller
units (MCUs) for classifying sensor data. We investigate the theoretical
foundations of SVMs, we prove in particular a very general version of Mer-
cer’s theorem, and review the software package µSVM, which is an imple-
mentation of an SVM for use on MCUs. Present SVM solutions are not
applicable to MCUs, because they need too much memory space which can
be expected when running on a personal computer, but not on an MCU. It
is shown that, while µSVM’s execution time does not scale very well to a
large number of training examples, it is possible to prematurely terminate
the training process and still retain good numerical accuracy.

i

Contents

1. Introduction 1
1.1. Motivation . 2
1.2. Structure of the Thesis . 3

2. Optimization and SVMs 4
2.1. Basic Optimization Theory . 4

2.1.1. Convexity – Definition and Simple Properties 5
2.1.2. Global/Local Minima . 8
2.1.3. Differentiability . 8
2.1.4. A Minimality Condition 10

2.2. Bayesian Classification . 11
2.3. Constrained Quadratic Optimization for SVMs 13
2.4. Are we there yet? – Optimality Conditions 14
2.5. Kernel Functions . 16

3. SVM Algorithms 19
3.1. Näıve KKT . 19
3.2. Dealing with Errors . 20
3.3. The Dual Formulation . 21
3.4. Solution Strategies . 22

3.4.1. Osuna et al. 22
3.4.2. SMO . 23
3.4.3. SVMlight . 25

3.5. The Classifier Function . 26

4. Implementation 27
4.1. µSVM Overview . 27
4.2. Target Hardware . 28

5. Results and Discussion 30
5.1. Performance . 30
5.2. Speed of Convergence . 31

6. Summary 33

Bibliography 34

A. Notation 35

ii

B. µSVM Documentation 36
B.1. Training . 36

B.1.1. Kernels . 37
B.1.2. Early Termination . 37

B.2. Classification . 37
B.3. Compiler Flags . 37
B.4. Example . 37

iii

1. Introduction

Support Vector Machines (SVMs) are a method in machine learning where the
goal is a binary classification of input data. The procedure is the following: In
a first phase, the so-called training phase, a set of labeled objects is presented
to the machine. The labels are taken from a two-element set (e. g., 0/1, A/B,
+1/−1, good/bad, . . .). The machine’s objective is to derive a decision proce-
dure from this training set such that it can classify correctly objects presented
to it in the future. Of course, it is the supervisor’s responsibility to choose
the training set adequately, i. e., taking as representative objects as possible to
enable good classification performance on future observations.

Support Vector Machines are used for a variety of classification tasks. These
include handwriting recognition, speaker identification, text categorization and
face detection.

Figure 1.1.: SVM Training

1

1 Introduction 1.1 Motivation

1.1. Motivation

In a technical device, e. g., a control loop, it is necessary to have some sort
of input data from the environment. These values are the output of sensor
devices. Now, relying on a single sensor is not reasonable since the sensor
may fail or behave highly differently in different environmental situations (e. g.,
temperature, light, movement). To compensate for this, sensors are replicated
(not necessarily identically) and even completely different types of sensors may
be used. Consider, for example, the velocity sensor of a roller coaster wagon.
It might be known that velocity sensor A works well in the temperature range
of 0◦C to 20◦C and that velocity sensor B is more accurate from 20◦C onwards.
So, it would be reasonable to install both sensors A and B and additionally put
a temperature sensor on the device. In that way, one could use sensor A up to
20◦C and sensor B above. The value returned by the sensor device will be that
of sensor A or sensor B depending on the temperature. It is transparent to the
control application which sensors are used and even which sensors exist in the
device. The calculation1 of the returned value is done by a microcontroller unit
(MCU) inside the sensor device.

Now, it could be possible that the choice which sensor to trust is based on
more than one parameter. Then the decision which sensor to use would no
longer be as simple as the check whether one number is smaller than the other,
but a more sophisticated method would have to be used. This problem can be
tackled with the use of an SVM.

Of course, the previous example alone does not justify an implementation
of the SVM training algorithm on the MCU, because most often, the char-
acteristics of the sensors are known beforehand and the training can happen
offline on a PC. But situations may occur where such a priori knowledge is not
accessible, for example if the device is to be used in a broad variety of different
environments which are not determined a priori and the device has to adjust
to a new environment periodically.

Other applications for an SVM implementation on an MCU might include
classification tasks like determining a “safe state” in an execution2 or image
classification (though a pixel-by-pixel comparison will not be feasible).

1It should be noted that this calculation need not be as easy as choosing the right sensor.
It might involve taking different sensor values with appropriate weighting factors as well
as more complex methods. The use of such methods is referred to as sensor fusion.

2A safe state could be one where it is possible for the device to enter a sleep mode, because
it will not be used for a while. Of course, this decision will be a probabilistic one and
hence is not suitable for safety critical applications.

2

1 Introduction 1.2 Structure of the Thesis

1.2. Structure of the Thesis

Chapter 2 gives a textbook-like introduction to the basic concepts of the branch
of optimization theory needed for SVMs. Chapter 3 derives basic algorithmic
concepts in SV training and reviews popular approaches. The implementation
of µSVM is described in chapter 4. Chapter 5 states results concerning the
performance of µSVM. The thesis ends with a conclusion in chapter 6.

3

2. Optimization and SVMs

This chapter treats the mathematical foundations of Support Vector Machines.
We start with the classification of the main problem in Support Vector
training – namely solving the quadratic program that yields the separating
hypersurface for our training set. We then investigate optimality conditions
for the optimization problem and give first ideas for efficient algorithms. We
end the chapter with a slight generalization of the problem which is of greatest
importance in practice (kernel functions instead of scalar product).
The chapter is essentially self-contained although many proofs are left out
in order to avoid an overly mathematical bias. Only some of the most
prototypical (or short) proofs are stated.

2.1. Basic Optimization Theory

Definition 1. Let f : X → R be a function (the objective function) and S ⊂ X
be a nonempty set (the feasibility set). The problem of finding an x0 ∈ S such
that

f(x0) 6 f(x) for all x ∈ S (2.1)

is called a minimization problem.

We note that trying to solve this problem only makes sense if
inf{f(x) | x ∈ S} exists, i. e., f is bounded from below on S.
Analogously, if we exchange “6” by “>” in Definition 1, we get a maximization
problem. We call both an optimization problem. We will only be concerned
with minimization problems here as the other case is analogous – we just have
to flip a few inequality signs, exchange min by max, inf by sup, etc.
The problem that we will try to solve in SVM training is a so-called convex
optimization problem, i. e., both the objective function f and the feasibil-
ity set S are convex. We will define these terms and derive some first properties.

For the following, we set

R = R ∪ {+∞} (2.2)

4

2 Optimization and SVMs 2.1 Basic Optimization Theory

with
x < +∞ and x +∞ = +∞ (2.3)

for every real x. Further, X will always denote a subset of a finite-dimensional
Hilbert space H over the reals. We can think X ⊂ Rn here.

2.1.1. Convexity – Definition and Simple Properties

Definition 2. Let A ⊂ X. We call A convex if for all x, y ∈ A and 0 < λ < 1:

λx + (1− λ)y ∈ A (2.4)

Figure 2.1.: A non-convex set

Definition 3. Let X be convex, f : X → R. We call f convex if for all
x, y ∈ X and 0 < λ < 1:

f(λx + (1− λ)y) 6 λf(x) + (1− λ)f(y) (2.5)

We call f closed if it is lower semi-continuous, i. e., for all c ∈ R, f−1((c,∞])
is open in X.

Convex sets and functions turn out to be quite convenient:

5

2 Optimization and SVMs 2.1 Basic Optimization Theory

Figure 2.2.: A convex function

Proposition 1. Let I be an arbitrary set and let Si be a convex set for i ∈ I.
Then the intersection

S =
⋂
i∈I

Si (2.6)

is again convex.

Proof. For all x, y ∈ S and all i ∈ I holds x, y ∈ Si.

Proposition 2. Let I be an arbitrary set. Let fi : X → R be a convex function
and λi > 0 for every i ∈ I with at most finitely many λi 6= 0. Then holds:

(1) The function f : X → R,

f(x) =
∑
i∈I

λifi(x) (2.7)

is convex. If all fi are closed, then so is f .

(2) The function g : X → R,

g(x) = sup
i∈I

fi(x) (2.8)

is convex. If all fi are closed, then so is g.

(3) If (I,�) is a directed set and the pointwise limit (proper or improper to-
wards +∞) of (fi)i∈I exists, then the function h : X → R,

h(x) = lim fi(x) (2.9)

is convex.

6

2 Optimization and SVMs 2.1 Basic Optimization Theory

Proof. (1): It is obvious that f is convex. We show the closedness in two steps
(λ > 0, f closed ⇒ λf closed; f, g closed ⇒ f + g closed).
It is (λf)−1((c,∞]) = f−1((c/λ,∞]). Let x ∈ (f + g)−1((c,∞]), i. e.,

f(x) + g(x) > c. (2.10)

We can find an ε > 0 such that

f(x)− ε + g(x)− ε > c (2.11)

still holds. It is

x ∈ f−1((f(x)− ε,∞]) ∩ g−1((g(x)− ε,∞]) ⊂ (f + g)−1((c,∞]) (2.12)

with the inner set being open as the intersection of two open sets.

(2): An easy reformulation of the definition of convexity (2.5) is the following:
The set

E(f) = {(x, y) ∈ X ×R | f(x) 6 y} (2.13)

is convex in X × R. (E(f) is the so-called epigraph of f .) Now, all E(fi) are
convex and thus,

E(g) =
⋂
i∈I

E(fi) (2.14)

is also convex by Proposition 1, i. e., g is convex. It is g closed, because

g−1((c,∞]) =
⋃
i∈I

f−1
i ((c,∞]) (2.15)

is open.

(3): Let x, y ∈ X, λ ∈ (0, 1). It is

fi(λx + (1− λ)y) 6 λfi(x) + (1− λ)fi(y) (2.16)

for all i ∈ I and thus, by taking the limit (non-strict inequalities are preserved
under limit-taking and the field operations in R are continuous),

h(λx + (1− λ)y) 6 λh(x) + (1− λ)h(y). (2.17)

We remark that the limit function h is not closed in general if the fi are.
This is because even limits of sequences of continuous functions can behave
nastier than being “just semi-continuous”.
(1) and (3) together imply that also the limit of the series∑

i∈I

λifi (2.18)

is convex if the sum exists. We can drop the requirement that only finitely
many λi are nonzero here.

7

2 Optimization and SVMs 2.1 Basic Optimization Theory

2.1.2. Global/Local Minima

Our search for solutions of the minimization problem will become a lot easier
with the following theorem. Namely, we can restrict ourselves to search for
local minima, because all local minima of convex functions are already global.

Theorem 1. Let f : X → R be a convex function and x0 ∈ X with f(x0) ∈ R
which is a local minimum of f , i. e., there exists a neighbourhood U of x0 such
that

f(x0) 6 f(x) for all x ∈ U. (2.19)

Then x0 is a global minimum of f .

Proof. Let x1 be a point in X with f(x0) > f(x1) and let ε > 0 such that
Bε(x0) ⊂ U . It is x1 6∈ Bε(x0). We set

λ =
ε

2 ‖x1 − x0‖
. (2.20)

Then we have that λx1 + (1− λ)x0 ∈ U and thus

f(x0) 6 f(λx1 + (1− λ)x0) 6 λf(x1) + (1− λ)f(x0) < f(x0) (2.21)

which is a contradiction.

The set of points that minimize a convex function is always convex and
closed if the set on which f is real-valued is closed, i. e., f is closed. (The
convexity is immediate. Let x0 be a minimum of f . The complement of the
set of minima is equal to {x | f(x) > f(x0)} which is open, because f is
continuous in the set {x | f(x) < ∞}.)

2.1.3. Differentiability

From now on, we restrict ourselves to finite-valued functions, i. e., to functions
f : X → R.

Convex functions are always one-sided differentiable in every direction.
Because this result is non-trivial, we formulate it as a lemma before using the
existence of the differential in the next definition.

8

2 Optimization and SVMs 2.1 Basic Optimization Theory

Lemma 1. Let f : X → R be convex, x ∈ X◦, where X◦ denotes the interior
of X, and v ∈ H. Then the limit

lim
h↘0

f(x + hv)− f(x)

h
(2.22)

exists in R.

Proof. Can be found in [HUL93] p. 238 (for the case X = Rn, but the proof for
the general case is the same).

Definition 4. Let f : X → R be convex, x ∈ X◦ and v ∈ H. The real number

Dvf(x) = lim
h↘0

f(x + hv)− f(x)

h
(2.23)

is called the directional derivative of f at x in direction v.

For a real convex function f , we essentially have only two directions: v = +1
and v = −1. The directional derivative D+1f(x) is equal to the right-sided
derivative f ′+(x) of f at x. Likewise, D−1f(x) is the negative of the left-sided
derivative −f ′−(x). For arbitrary v > 0, we have

Dvf(x) = lim
h↘0

f(x + hv)− f(x)

h
(2.24)

= v lim
hv↘0

f(x + hv)− f(x)

hv
(2.25)

= vf ′+(x). (2.26)

Analogously, for v < 0:
Dvf(x) = vf ′−(x) (2.27)

Of course, we always have (v = 0):

D0f(x) = 0 (2.28)

A real function g is differentiable at x if and only if g′+(x), g′−(x) exist and are
equal. Hence, if f is differentiable, then

Dvf(x) = vf ′(x). (2.29)

Definition 5. Let f : X → R be convex and x ∈ X◦. The set

∂f(x) = {s ∈ H | 〈s, v〉 6 Dv(x) for all v ∈ H} (2.30)

is called the subdifferential of f at x.

9

2 Optimization and SVMs 2.1 Basic Optimization Theory

We see immediately that for differentiable real functions f , we have ∂f(x) =
{f ′(x)}, because setting v to +1 resp.−1 in (2.29) and the definition of the
subderivative gives us for s ∈ ∂f(x)

s 6 f ′(x) (2.31)

resp.
−s 6 −f ′(x), (2.32)

hence s = f ′(x). Moreover, f ′(x) is in ∂f(x) because of (2.29). This is part of
a more general principle:

Proposition 3. Let f : X → R be convex and x ∈ X. Then holds:

(1) ∂f(x) is a nonempty convex compact set.

(2) ∂f(x) = {s0} for an s0 ∈ H if and only if f is differentiable in x. In this
case, we have ∇f(x) = s0.

Proof. [HUL93] p. 239.

Theoretically very interesting, though of no great importance to our problem,
is the following

Theorem 2. Let X ⊂ Rn be open and f : X → R be a convex function. Then
f is differentiable Lebesgue almost everywhere.

Proof. In fact, for n = 1, it is ∂f(x) = [f ′−(x), f ′+(x)]. Thus, if f is not
differentiable at x, then ∂f(x) is a nontrivial interval and hence contains a
rational number in its interior. Further, for x < y, the interiors of ∂f(x)
and ∂f(y) are disjoint. This shows that the set of points where f fails to be
differentiable is at most countable and thus Lebesgue zero. For details, refer
to [HUL93] pp. 189-190.

With the notion of the subdifferential, we can formulate our first minimality
criterion (which is still very abstract by now).

2.1.4. A Minimality Condition

Theorem 3. Let f : X → R be convex and x0 ∈ X. The following are
equivalent.

(1) x0 minimizes f , i. e., f(x0) 6 f(x) for all x ∈ X

10

2 Optimization and SVMs 2.2 Bayesian Classification

(2) 0 ∈ ∂f(x0)

Proof. (⇒): It is f(x0 + hv) − f(x0) > 0 for all hv and thus Dvf(x) > 0 for
all v.
(⇐): We show that the mapping

h 7→ f(x0 + hv)− f(x0)

h
(2.33)

is nondecreasing for h > 0. Let 0 < h1 < h2. It is

f(x0 + h1v) = f

(
(1− h1

h2

)x0 +
h1

h2

(x0 + h2v)

)
(2.34)

6 (1− h1

h2

)f(x0) +
h1

h2

f(x0 + h2v) (2.35)

= f(x0) + h1
f(x0 + h2v)− f(x0)

h2

(2.36)

which yields
f(x0 + h1v)− f(x0)

h1

6
f(x0 + h2v)− f(x0)

h2

. (2.37)

This implies that

lim
h↘0

f(x0 + hv)− f(x0)

h
= inf

h>0

f(x0 + hv)− f(x0)

h
(2.38)

where the left-hand side is > 0 for all v ∈ X. This already shows the minimality
of f(x0): We can set v = x−x0, h = 1 and get f(x)− f(x0) > 0 with equation
(2.38).

2.2. Bayesian Classification

In supervised learning, the situation is the following. A number of objects
(commonly described as real-valued vector) together with a label (a real num-
ber or an element of {0, 1}) are presented to the machine. This set of pairs
(object, label) is called the training set T . The machine’s objective is to derive
a decision function f that maps objects to labels such that it is consistent with
the training set (i. e., f(object)=label for all (object, label) ∈ T) and that it
predicts labels for new objects well enough. In fact, the requirement that f is
consistent with all elements of T is often dropped and replaced by the require-
ment that it is close enough for most elements of T .
For the procedure of finding the decision function f , two cases can be distin-
guished ([Vap98]):

11

2 Optimization and SVMs 2.2 Bayesian Classification

1. It is known that the “real” labeling function is taken from a fixed set
Γ = {fα | α ∈ A} of functions.

2. No such set is known.

We will be concerned with the first case, i. e., we are given such a set Γ and
we only adjust the parameter α to find the function that fits best. Both ap-
proaches assume that such a “real” labeling function exists. One can of course
generalize this and search for an appropriate probability distribution for the la-
beling process.
We suppose that the labeling process by the supervisor that labeled the train-
ing set is determined by a fixed (but unknown) probability distribution F . Let
F (ω|x) denote the probability that the supervisor assigns label ω to the object
x and let F (x) denote the probability that object x is chosen for classification.
The problem of finding the best parameter α is then minimizing the function

R(α) =

∫
L(fα(x), ω)dF (x, ω) (2.39)

where F (x, ω) = F (x)F (ω|x) and L is an appropriately chosen loss function,
i. e., a non-negative function that increases with the mislabelings of the clas-
sification function fα. A very simple loss function would be L(a, b) = 1 − δa,b

where δ denotes the Kronecker symbol, i. e., δa,b = 1 if and only if a = b and
= 0 else.
If we only take in account the only thing we know about the distribution F –
namely the training set T = {(x1, ω1), . . . , (x`, ω`)} – then (2.39) becomes

R′(α) =
1

`

∑̀
i=1

L(fα(xi), ωi). (2.40)

Here we assume that the training set was chosen with the same probability
distribution F as the forthcoming samples.
Since what we do is binary classification, i. e., there are only two possible labels
for all objects, we can have ω ∈ {−1, 1} and by using a simple loss function,
we get

R′′(α) =
∑̀
i=1

|fα(xi)− ωi| (2.41)

as the risk function we are to minimize. In fact, up to a constant factor and
constant summand, the simple loss function (1 − δ) is the only one in binary
classification if we demand L to be symmetric.

12

2 Optimization and SVMs 2.3 Constrained Quadratic Optimization for SVMs

2.3. Constrained Quadratic Optimization for
SVMs

In this and the following section we discuss methods for solving the general
optimization problem from definition 1 and explore the problem we are to
solve in Support Vector Training. Up to now, we neglected the feasibility set
S, that is we assumed S = Rn. As in ordinary vector analysis, finding extremal
points in non-open sets is a lot harder than it is in open sets where we have
a convenient necessary condition (∇f = 0). For the case that the feasibility
set is a differentiable manifold there is the well-known method of Lagrangian
multipliers (∇f =

∑
λi∇ϕi) for which we will derive a passable substitution

(in reality, even a generalization) in the next section. In our case, S will be a
closed convex set and will be described by equality and inequality constraints.
The feasibility set will be expressed as the intersection of inverse images of
closed sets under convex functions.
Suppose our training set is

T = {(x1, ω1), . . . , (x`, ω`)} (2.42)

where ωi ∈ {−1, +1} and xi ∈ Rn for 1 6 i 6 `. We split T into the two sets

A = {xi | (xi, ωi) ∈ T, ωi = +1}, (2.43)

B = {xi | (xi, ωi) ∈ T, ωi = −1}. (2.44)

Our goal is to find an affine hyperplane V in Rn such that the points of A are
on one side and the points of B are on the other. Of course, this is only possible
if A∩B = ∅, i. e., no point has both labels. Additionally, this hyperplane should
have maximal distance to the points of A∪B. More formally, if V is described
by the equation

〈x, w〉 = c (2.45)

where w ∈ Rn, ‖w‖ = 1 and c ∈ R, then it should hold that 〈x, w〉 > c for
x ∈ A and 〈y, w〉 < c for y ∈ B. In this case, we say that V separates the sets
A and B and that A and B are separable. The distance dist(x, V) of a point x
to V is equal to |c− 〈x, w〉|. More explicitly for our points of interest,

dist(x, V) =

{
〈x, w〉 − c , x ∈ A

c− 〈x, w〉 , x ∈ B
. (2.46)

The following exposition closely follows [Vap98], chap. 10 and [Bur98], chap. 3.
We define for every normed w the numbers c1(w) = inf{〈x, w〉 | x ∈ A} and
c2(w) = sup{〈y, w〉 | y ∈ B}. According to (2.46), the sum of the minimal
distances of A and B to V respectively is equal to ρ(w) = (c1(w) − c) + (c −

13

2 Optimization and SVMs 2.4 Are we there yet? – Optimality Conditions

c2(w)) = c1(w) − c2(w). We note that even though the parameter c is yet to
be determined, the expression ρ(w) does not depend on it. Since we want the
distances to be maximal, we want to maximize ρ(w). After we found such a
normed w for which ρ(w) is maximal, it is clear that c = (c1(w) + c2(w))/2
is the optimal choice for the parameter c. For it is the mean of both extreme
values.

Lemma 2. The function w 7→ ρ(w) has a unique maximum if A, B 6= ∅ and
A ∩B = ∅.

Proof. The existence of a maximum is clear since Sn−1 is compact and ρ is
continuous. To prove the uniqueness, we first show that ρ, as a function on the
set of x ∈ Rn for which ‖x‖ 6 1, attains its maximum at the set’s boundary,
i. e., Sn−1. For let 0 < ‖x‖ < 1, then ρ(x/ ‖x‖) = ρ(x)/ ‖x‖ > ρ(x) with
‖x/ ‖x‖‖ = 1. Let now x1, x2 ∈ Sn−1 be two distinct maxima. Then (x1+x2)/2
is also a maximum with ‖(x1 + x2)/2‖ < 1. Contradiction.

We can reformulate the problem to finding w ∈ Rn \ {0} and b ∈ R such
that

〈x, w〉 − b > +1 (x ∈ A) (2.47)

〈y, w〉 − b 6 −1 (y ∈ B) (2.48)

where ‖w‖ is minimal. The above is equivalent to

ωi (〈xi, w〉 − b)− 1 > 0 (1 6 i 6 `). (2.49)

If we find an optimal w, equality holds in (2.49) for at least two i – one of each
class. Then, the distance between the two hyperplanes defined by 〈x, w〉 − b =
±1 is equal to 2/ ‖w‖. These hyperplanes are parallel to V which is defined by
〈x, w〉− b = 0 and are called support hyperplanes. Thus, the above found value
2/ ‖w‖ is the same as that of the function ρ for the respective argument. To
sum up, our problem to solve is now the following.

min ‖w‖2 subject to (2.49) (2.50)

This problem is a convex optimization problem since the objective function
x 7→ ‖x‖2 is convex and so is the feasibility set S which is the intersection of
half spaces defined by (2.49).

2.4. Are we there yet? – Optimality Conditions

In this section, we will introduce necessary and sufficient conditions for minima
of convex optimization problems. These are known as the Karush-Kuhn-Tucker
(KKT) conditions.

14

2 Optimization and SVMs 2.4 Are we there yet? – Optimality Conditions

Figure 2.3.: Support hyperplanes

Theorem 4 (KKT). Let fi : X → R be convex functions for 0 6 i 6 m where
X ⊂ Rn is a convex set. We define

S = {x ∈ X | fi(x) 6 0 (1 6 i 6 m)}. (2.51)

Suppose that x∗ minimizes f0 in the set S. Then there exists (λ∗0, λ
∗) =

(λ∗0, . . . , λ
∗
m) 6= 0 such that

(1) the function L(x, λ∗0, λ
∗) =

∑m
i=0 λ∗i fi(x) is minimized by x∗ in the set X.

(2) (λ∗0, λ
∗) > 0.

(3) λ∗i fi(x
∗) = 0 for all i.

Let now x∗ and (λ∗0, λ
∗) satisfy conditions (1), (2), (3). If λ∗0 6= 0, then x∗

minimizes f0 in S.

The function

L(x, λ0, λ) =
m∑

i=0

λifi(x) (2.52)

is called the Lagrangian of the optimization problem.

Proposition 4. With the notation of theorem 4, it is sufficient for λ∗0 to be
possibly 6= 0 that there exists an x0 ∈ X with fi(x0) < 0 for all 1 6 i 6 m.

Thus, in this case, we can eliminate λ0 from our Lagrangian by division and
get the simpler version

L(x, λ) = f0(x) +
m∑

i=1

λifi(x). (2.53)

15

2 Optimization and SVMs 2.5 Kernel Functions

2.5. Kernel Functions

It is possible to replace the separating hyperplane by a more general hypersur-
face in Rn which is the inverse image of a linear hyperplane in a higher (often
infinite) dimensional Hilbert space H. The technique we will use is known as
the kernel trick. It enables us to classify data sets that are not separable by a
(linear) hyperplane.

Figure 2.4.: Data that is not linearly separable

We consider a transformation Φ : Rn → H with which we map the training
data before applying the algorithm. Thus, the inner products that occur
become 〈Φ(x), Φ(y)〉 = K(x, y). We see that we do not really have to know
the mapping Φ – not even the space H. We only need to know the kernel
function K.

Now, one can go the opposite direction and ask: For which functions
K : Rn × Rn → R exists a Hilbert space (H, 〈·, ·〉H) and a transformation
Φ : Rn → H, such that K(x, y) = 〈Φ(x), Φ(y)〉H?
This question is partially answered by Mercer’s theorem (in [Mer09], although
this version is a generalization of his original theorem to more general domains
than the real compact intervals [a, b]). It states that this is true for all contin-
uous symmetric K that are nonnegative definite. The following proof can be
skipped.

Theorem 5 (Mercer). Let (X, A, µ) be a σ-finite measure space (i. e., for ι ∈ N
there exist Aι ∈ A with µ(Aι) < ∞ such that X =

⋃
Aι). Let further K :

16

2 Optimization and SVMs 2.5 Kernel Functions

X × X → R be a symmetric function in L2(X2) such that for all f ∈ L2(X)
there holds: ∫

X2

K(x, y)f(x)f(y)d(x, y) > 0 (2.54)

Then there exists an orthonormal family (fi)i∈I in L2(X) and a family (λi)i∈I

of non-negative real numbers such that

K(x, y) =
∑
i∈I

λifi(x)fi(y) (2.55)

for almost all (x, y) ∈ X2.

Proof. We define the operator T = TK : L2(X) → L2(X) by

TKf(x) =

∫
X

K(x, t)f(t)dt. (2.56)

It maps into L2(X), because K is in L2(X2). For L2(X) is a Hilbert space,
there exists an orthonormal basis B of L2(X). We will show that

∑
‖Tb‖2 is

finite if b varies in B:∑
b∈B

‖Tb‖2 =
∑
b∈B

∫
X

∣∣∣∣∫
X

K(x, t)b(t)dt

∣∣∣∣2 dx (2.57)

=

∫
X

∑
b∈B

|〈K(x, ·), b〉|2 dx (2.58)

=

∫
X

‖K(x, ·)‖2 dx (2.59)

=

∫
X

∫
X

|K(x, y)|2 dydx < ∞ (2.60)

This shows that T is Hilbert-Schmidt and hence compact ([Wei00], Satz
3.18(b)). Since K is symmetric, so is T . We can thus apply the spectral
theorem and get the existence of an orthonormal basis (fi)i∈I of L2(X) which
consists of eigenfunctions of T . Let Tfi = λifi for i ∈ I. It is λi = λi 〈fi, fi〉 =
〈Tfi, fi〉 > 0 for all i. Further, for f ∈ L2(X), it is

∫
f(t)

∑
λifi(t)fi(x)dt =∑

λifi(x)
∫

fi(t)f(t)dt =
∑

fi(x) 〈TKfi, f〉 =
∑
〈TKf, fi〉 fi(x) = TKf(x) al-

most everywhere. Now, the mapping K 7→ TK is injective since X is σ-finite.
Hence, the claimed formula follows.

We can then define the transformation Φ : X → `2(I) by

Φ(x) =
(√

λifi(x)
)

i∈I
(2.61)

17

2 Optimization and SVMs 2.5 Kernel Functions

where our Hilbert space H = `2(I) is the space of quadratic summable real
sequences with index set I equipped with the inner product

〈a, b〉 =
∑
i∈I

aibi (2.62)

where a = (ai), b = (bi). The image Φ(x) is really in `2(I), because∑
i∈I

∣∣∣√λifi(x)
∣∣∣2 =

∑
i∈I

λifi(x)fi(x) = K(x, x). (2.63)

In particular, Φ(x) is quadratic summable. This gives us our desired result

K(x, y) = 〈Φ(x), Φ(y)〉 . (2.64)

Our favored space Rn is σ-finite (with respect to the Lebesgue measure λ).
We can choose Aι = {x ∈ Rn | ‖x‖ < ι}. It is λ(Aι) = ιnπn/2/Γ(n

2
+ 1) < ∞

and Aι → Rn.

Possible nonnegative definite kernels include ([Bur98])

• K(x, y) = (〈x, y〉+ 1)p (p ∈ N)

• K(x, y) = e−
‖x−y‖2

2σ2 (σ 6= 0)

• K(x, y) = tanh(κ〈x, y〉 − δ) for certain κ, δ ∈ R

where we might have to restrict K to a smaller set than the whole Rn. For
example, the Gaussian kernel K(x, y) = e−‖x−y‖2/2σ2

is not in L2(Rn ×Rn):∫
Rn×Rn

|K(x, y)|2 d(x, y) =

∫
Rn

∫
Rn

e−‖x−y‖2/σ2

dxdy (2.65)

=

∫
Rn

∫
Rn

e−‖x‖
2

|σ|n dxdy (2.66)

=

∫
Rn

∣∣σ√π
∣∣n dy = ∞ (2.67)

But it is, of course, in L2(C × C) for every compact subset C of Rn.
(
∫

K2 6 λ(C)2 max K2)

18

3. SVM Algorithms

This chapter introduces the usual formulation of the SVM training problem
and reviews popular solution algorithms. Caching and shrinking techniques
are also treated though they are not applicable for use on the microcontroller
due to the stringent memory space limitations. In fact, one could skip all the
preceding and start with section 3.3, the final optimization problem statement,
if one is only interested in the algorithmic aspects of Support Vector Machines
as opposed to the mathematical aspects and derivations.

3.1. Näıve KKT

With our convex constraint functions (2.49), fi(w, b) = −ωi(〈xi, w〉− b)+ 1 for
1 6 i 6 `, and a slightly modified objective function f0(w, b) = 1

2
‖w‖2, the

simple Lagrangian (2.53) becomes

L(w, b, λ) =
1

2
‖w‖2 −

∑̀
i=1

λiωi(〈xi, w〉 − b) +
∑̀
i=1

λi. (3.1)

The KKT conditions tell us that it is necessary for (w, b) to be a solution of
(2.50) that (w, b) is a minimum of the Lagrangian for a certain choice of λ.
Since L is continuously differentiable, it is therefore necessary that the partial
derivatives ∂L/∂w and ∂L/∂b vanish. This means that w −

∑
λiωixi = 0,

which is

w =
∑̀
i=1

λiωixi. (3.2)

Also, by partial derivation with respect to b,

∑̀
i=1

λiωi = 0. (3.3)

We can substitute this into the Lagrangian by noticing

1

2
‖w‖2 =

1

2

〈∑
λiωixi,

∑
λiωixi

〉
=

1

2

∑̀
i,j=1

λiλjωiωj 〈xi, xj〉 (3.4)

19

3 SVM Algorithms 3.2 Dealing with Errors

and ∑̀
i=1

λiωi(〈xi, w〉+ b) =
∑̀
i,j=1

λiλjωiωj 〈xi, xj〉+ 0 (3.5)

which yields

W (λ) = L(w, b, λ) =
∑̀
i=1

λi −
1

2

∑̀
i,j=1

λiλjωiωj 〈xi, xj〉 . (3.6)

This new formulation of the Lagrangian does not depend on w and b anymore.
Since it is necessary that (w, b) minimizes L for a choice of λ subject to certain
constraints and since we know that a minimum exists, it is sufficient to maxi-
mize W with respect to λ subject to the same constraints. This reformulation,
the so-called dual formulation, is summarized in section 3.3.

3.2. Dealing with Errors

There may be cases where we want to tolerate some training errors, i. e., points
of the training set that lie on the wrong side of the hyperplane. This is the
case, for example, if we use a linear classifier and the subsets of the training
set that correspond to the respective labels are not linearly separable (i. e.,
there exists no hyperplane that separates the two sets). To achieve this, we
introduce a penalty parameter C for points that fail to be on the side of its
label. Of course, we want the penalty to be higher the greater the distance of
the erroneous points to the hyperplane. But first of all, we need to loosen the
strict constraint ωi(〈xi, w〉+ b) > 1. We therefore introduce non-negative slack
variables ξi ([Bur98], 3.5) to transform the above into

ωi(〈xi, w〉 − b) > 1− ξi (1 6 i 6 `) (3.7)

where we want to have ξ > 0. To actually implement the penalty, we simply
add the slack variables to the objective function of the minimization problem
multiplied with the parameter C:

f0(w, b, ξ) =
1

2
‖w‖2 + C

∑̀
i=1

ξi (3.8)

What changes does this introduce into the dual formulation? Well, the full
Lagrangian reads as follows (note the changed/additional constraints in the
primal formulation!).

L(w, b, ξ, λ, µ) =
1

2
‖w‖2 + C

∑̀
i=1

ξi −
∑̀
i=1

λi(ωi(〈xi, w〉 − b)− 1 + ξi)−
∑̀
i=1

µiξi

(3.9)

20

3 SVM Algorithms 3.3 The Dual Formulation

Again, this can be simplified by setting ∂L/∂w = ∂L/∂b = 0. These equations
yield the same as above. Additionally, we can have ∂L/∂ξi = 0 for 1 6 i 6 `
which is C − λi − µi = 0. This implies

C
∑̀
i=1

ξi −
∑̀
i=1

λiξi −
∑̀
i=1

µiξi = 0. (3.10)

Thus, in reality ξ and µ do not appear at all in the dual Lagrangian W (λ).
The only additional constraint we get, since µi > 0, is C > λi.

3.3. The Dual Formulation

We already utilize section 2.5 here, i. e., we replace the scalar product 〈x, y〉 by
a kernel function K(x, y). Further, we again state it as a minimization problem
by flipping signs of the objective function. The complete dual formulation then
reads:

min W (λ) = −
∑̀
i=1

λi +
1

2

∑̀
i,j=1

λiλjωiωjK(xi, xj) (3.11)

s. t.
∑̀
i=1

λiωi = 0 (3.12)

0 6 λ 6 C (3.13)

In the above formula, 0 6 λ 6 C means 0 6 λi 6 C for all i. With the notation
Q = (ωiωjK(xi, xj))16i,j6` and e = (1)16i6`, it becomes

min W (λ) = −λT e +
1

2
λT Qλ (3.14)

s. t. λT ω = 0 (3.15)

0 6 λ 6 Ce (3.16)

where zT denotes the transpose of z. The necessary and sufficient KKT condi-
tions for a minimum are ([Pla98]):

λi = 0 ⇐⇒ ωiui > 1 (3.17)

0 < λi < C ⇐⇒ ωiui = 1 (3.18)

λi = C ⇐⇒ ωiui 6 1 (3.19)

Here ui denotes the “raw” classifier function evaluated at the training point xi,
that is

ui =
∑̀
j=1

λjωjK(xi, xj)− b. (3.20)

21

3 SVM Algorithms 3.4 Solution Strategies

3.4. Solution Strategies

In this section, we briefly discuss popular algorithms for SVM training. Note
that these are geared towards very large sets of input data and thus mostly not
immediately utilizable for microcontroller use where we do not expect such mag-
nitude of data. Also, these algorithms assume that almost an infinite amount
of data can temporarily be stored on a hard disk drive and that only RAM
space is limited, which is not true in an MCU environment.

3.4.1. Osuna et al.

This algorithm ([OFG97]) utilizes a decomposition of the input index set
{1, . . . , `} into the working set B and the remainder set N , whose associated
multipliers λi will not change in the current iteration. If we denote by λJ , ωJ

and QIJ the vectors and matrices with entries corresponding to the index sets
I, J ⊂ {1, . . . , `}, then the optimization problem becomes

min −λT
Be +

1

2
λT

BQBBλB + λT
BqBN (3.21)

w. r. t. λB (3.22)

s. t. λT
BωB + λT

NωN = 0 (3.23)

0 6 λB 6 Ce (3.24)

Here, we omitted the constant terms that only include λN and QNN . Fur-

ther, qBN =
(
ωi

∑
j∈N λjωjK(xi, xj)

)
i∈B

. The algorithm is now based on the

following two observations.

• If we move an arbitrary index i from B to N , the objective function (of
the original problem) does not change and the solution is feasible. (Build
down)

• If we move an index i from N to B that violates the KKT conditions and
solve the subproblem for B, there is a strict improvement of the objective
function. (Build up)

The algorithm is sketched in pseudo-code below in figure 3.1.

Despite its good reception and reported positive results, the algorithm has a
theoretical disadvantage: Though it is guaranteed that the solution improves
in each iteration, there is no proof that it actually converges to an optimal
solution ([CHL00]).

22

3 SVM Algorithms 3.4 Solution Strategies

Osuna(x, ω) {
choose B ⊂ {1, . . . , `} arbitrarily;
N := {1, . . . , `} \B;
for(;;)
{

solve subproblem for B;
if(∃i ∈ N such that λi violates KKT)
{

choose j ∈ B arbitrarily;
B := {i} ∪B \ {j};
N := {j} ∪N \ {i};

} else break;
}
return λ; }

Figure 3.1.: Osuna et. al. decomposition algorithm

3.4.2. SMO

Sequential Minimal Optimization (SMO, [Pla98]) essentially employs the idea
of Osuna’s decomposition algorithm with |B| = 2 and adds heuristics for
the choice of the next working set pair. The main advantage of having only
two multipliers in the working set at a time is that the optimal solution can
be computed analytically here and the algorithm therefore does not have to
rely on the usage of numeric quadratic program solvers. We will take more
time to explain and derive this method since we will use this algorithm in the
implementation (chapter 4).

We consider the two Lagrangian multipliers λ1 and λ2. (We assume B =
{1, 2} without loss of generality.) The constraint (3.16) is 0 6 λ1, λ2 6 C and
(3.15) means ω1λ1 + ω2λ2 = ω1λ

′
1 + ω2λ

′
2 where λ′i denotes the old value of λi

of the previous iteration. Following [Pla98], we first compute the optimal value
for λ2 and then calculate λ1 from the constraints. We distinguish the cases
ω1 = ω2 and ω1 6= ω2. In the first case, we have λ1 + λ2 = d, in the second
λ1 − λ2 = d where d is a constant. Thus, the possible values for (λ1, λ2) lie all
on a line segment depicted in figure 3.2.

The lower and upper limits for λ2 thus are: L = max(0, λ′2 + λ′1 − C), H =
min(C, λ′2 +λ′1) for ω1 = ω2 and L = max(0, λ′2−λ′1), H = min(C, C +λ′2−λ′1)

23

3 SVM Algorithms 3.4 Solution Strategies

Figure 3.2.: Feasibility line for (λ1, λ2) in the case ω1 = ω2

for ω1 6= ω2. The objective function (c. f. Osuna) is

−λ1 − λ2 +
1

2
K11λ

2
1 +

1

2
K22λ

2
2 + sK12λ1λ2 + λ1v1 + λ2v2 (3.25)

where Kij = K(xi, xj), vi =
∑`

j=3 λ′jωjKij = ui + b′ − λ′1ω1K1i − λ′2ω2K2i and
s = ω1ω2 = ±1 depending on whether ω1 = ω2. By using λ1 +sλ2 = λ′1 +sλ′2 =
d, we can transform this into a function that depends on λ2 only. We can
then set the ordinary first derivative equal to zero and calculate λ2, provided
η = K11 +K22− 2K12, which is the second derivative of this function, does not
vanish. The embarrassing situation that it does vanish can occur, for example,
if xi = xj for i 6= j. In the other case, the optimal λ2 is equal to

λnew
2 = λ′2 +

ω2(u1 − ω1 − u2 + ω2)

η
. (3.26)

The quantity Ei = ui −ωi is called the error of the ith training example. Next
we need to check whether λnew

2 ∈ [L, H] and clip it into our square if it lies
outside:

λnew,clipped
2 =


H , λnew

2 > H

λnew
2 , L 6 λnew

2 6 H

L , λnew
2 < L

(3.27)

We can then compute λ1 from our equality constraint:

λ1 = λ′1 + s
(
λ′2 − λnew,clipped

2

)
(3.28)

If η = 0, we just evaluate the objective function at the boundaries λ2 = L and
λ2 = H and check whether the values differ. If so, we take the lower value. If
not, then λ2 = λ′2 and we cannot make any progress here.

24

3 SVM Algorithms 3.4 Solution Strategies

Two heuristics are used to determine the working set pair for the next itera-
tion. The first heuristic is concerned with finding a suitable λ2 and utilizes the
fact that many multipliers end up being either 0 or C by termination of the
algorithm. Thus, after a first pass through all examples, the algorithm conse-
quently only chooses training examples where the corresponding multiplier is
strictly between 0 and C. When there are no more changes possible with these
examples, it returns to looping over all examples again. The second heuristic
chooses a suitable partner for λ2, i. e., one with the largest expected step size.
To approximate the expected step size, the training example errors Ei are used.
These are stored in an error cache for fast access. The choice with largest ex-
pected progress is the one where |E1 − E2| is maximal. If there is no progress
with this example, the algorithm first loops over all examples currently not at
the bounds and then over all examples until progress is made.

3.4.3. SVMlight

T. Joachims introduced two new methods for solving the SVM training problem
in [Joa98], where he presented the SVMlight package. The first one is a more
sophisticated method for selecting the working set than the “random” one
used in Osuna decomposition. He proposed using first-order approximation to
the objective function to find a direction d of steepest descent, in which the
algorithm continues its operation. For this, he solves the following problem:

min V (d) = (∇W (λ))T d (3.29)

s. t. ωT d = 0 (3.30)

di > 0 (λi = 0) (3.31)

di 6 0 (λi = C) (3.32)

−e 6 d 6 e (3.33)

|{i | di 6= 0}| = q (3.34)

Here q = |B| is the size of the working set. Our new working set will then
be {i | di 6= 0}. Joachims gave an easy way to compute the solution of this
optimization problem by sorting the λi in a clever way. The second method is
“shrinking” – a technique that, like SMO’s heuristic, uses the fact that there
are many multipliers at the bounds in the optimal solution to reduce the size
of the optimization problem. Of course, if the guess that a multiplier will be at
the bounds was wrong, then it has to be visited in a later iteration nonetheless.

25

3 SVM Algorithms 3.5 The Classifier Function

3.5. The Classifier Function

When we are done with the training algorithm and found our optimal λ and
b, we are bound to ask how we can use this knowledge in classification of new
examples. In the case of a linear SVM, i. e., no kernel function but the ordinary
scalar product was used, we can simply calculate the vector w by

w =
∑̀
i=1

λiωixi (3.35)

and the classification function is

f(x) = sgn (〈x, w〉 − b) . (3.36)

The situation is not that easy if a kernel function was used. We cannot calculate
w, because we do not even know the space H it belongs to. We therefore have
to expand w in (3.36) to get

f(x) = sgn

(
Ns∑
i=1

λiωiK(x, xi)− b

)
(3.37)

where Ns denotes the number of support vectors, i. e., the number of vectors
for which λi 6= 0. We assume here without loss of generality that the xi are
numbered in such a way that the first Ns vectors are the support vectors. These
are the only ones we need to remember after the training process.

26

4. Implementation

This chapter describes the implementation of µSVM, a Support Vector Machine
package for use on small microcontroller units.

4.1. µSVM Overview

Sequential Minimal Optimization (section 3.4.2) is utilized by the µSVM pack-
age for solving the quadratic program in SVM training. It supports the data
types char, int and float for training example vectors. Support for new data
types can easily be implemented with minimal changes. The decision for a
specific type is made at compile time by macro definitions (e. g., compiler flag
-DuSVM X FLOAT for float vectors, see Documentation for details). Different
and also user-added kernel functions can be used for the algorithm. It can be
changed at run-time by setting the function pointer uSVM ker. Such a change
can be useful, for example, if the timing requirements of the program change
at run-time and the training procedure has to terminate earlier than in normal
operation. Then, a faster kernel could be used. Also, the precision uSVM EPS

can always be changed. Since the final values of the Lagrangian multipliers
are approximated fairly good early in the course of the training algorithm (see
chapter 5), the value of the flag uSVM terminate is checked periodically. The
current multiplier values are output immediately and the algorithm is stopped
in the case the flag was set. The main data structures are:

• uSVM x: Pointer to the training example vectors. The dimension
of the vectors is given by uSVM n and the number of examples is
stored in uSVM ell. This field is accessed by the uSVM READ(i,k) and
uSVM WRITE(i,k,z) macros.

• uSVM omega: This array contains the labels of the example vectors. The
values here should only be ±1. The length of the array is again uSVM ell.

• uSVM lambda: Array of Lagrangian multipliers with float precision.

• E: The error cache described together with the SMO algorithm. It is
used to determine the next working set pair. It also speeds up the train-

27

4 Implementation 4.2 Target Hardware

ing process by reducing the number of necessary kernel evaluations dra-
matically. Since this array consists of uSVM ell floating point values,
the memory requirements of the training process nearly doubles when
using the error cache. It can therefore be deactivated by setting the
uSVM NO ERROR CACHE macro.

The relevant functions and procedures are:

• uSVM train(): Starts the training algorithm. Allocates the uSVM lambda

field which is not free()’d by the function itself, but has to be freed by
the application in case it is no longer used. Returns -1 in case of an error
and the number of support vectors otherwise. This number is also stored
in the uSVM nSV variable.

• examine(i2): Searches for a suitable working set pair partner for i2 until
either progress is made or all examples were tried.

• take step(i1,i2): Computes the optimal solution for the subproblem
induced by the indices i1 and i2. Returns 1 if the current solution was
improved and 0 otherwise.

• uSVM classify(x): Classifies the example given by the array x of dimen-
sion uSVM n. Returns ±1.

The training algorithm is sketched in figure 4.1 on page 29.

4.2. Target Hardware

µSVM was developed and tested on an Atmel AVR ATmega16 microcontroller
using avr-libc version 1.2.5. The ATmega16 has a 16 MHz pipelined RISC
processor with 1 kB internal RAM. The register size is 8 bit.

28

4 Implementation 4.2 Target Hardware

uSVM train() {
uSVM lambda = malloc();
while progress was made in previous iteration

for all indices i2
examine(i2);

delete non-support vectors from uSVM x, uSVM omega and uSVM lambda;
nSV = # of support vectors;
return nSV;

}

examine(i2) {
while not tried all examples i1

i1 = good working set partner for i2;
if (take step(i1,i2)==1) return 1;

return 0;
}

take step(i1,i2) {
(lambda1,lambda2) = optimal solution for i1 and i2;
if(lambda1==uSVM lambda[i1] && lambda2==uSVM lambda[i2])

return 0; // no progress
update threshold b;
update error cache E;
uSVM lambda[i1] = lambda1;
uSVM lambda[i2] = lambda2;
return 1;

}

Figure 4.1.: µSVM training algorithm

29

5. Results and Discussion

This chapter evaluates the temporal behavior and the numerical accuracy of
the µSVM package. Also, it is examined at which point in the runtime of the
algorithm, the immediate results are sufficiently near to the final results to be
useful. This is done because of the possibility to set the uSVM terminate flag
during the execution to force untimely termination.

5.1. Performance

We start this section by comparing the runtime of µSVM and Joachim’s
SVMlight package on a personal computer for some example training sets. We
also state the runtimes of µSVM on the ATmega16 microcontroller (section 4.2).
We used four classes of example sets: EX A with n = 5 and ` = 5, EX B with
n = 20 and ` = 20, EX C with n = 50 and ` = 10. For each of these classes,
three randomly chosen example sets were tested. For all these tests, we took a
linear kernel with error penalty C = 3.0 and precision ε = 0.005. Additionally,
the EX D.1 example set was chosen with the parameters n = 10 and ` = 30.
The PC tests were performed on a PowerMac G5 with two 2 GHz processors
and 2.5 GB RAM. The tests on the MCU were performed one time using an
error cache (with EC) and one time without (w/o EC). The package SVMlight

was not evaluated on the MCU because of the (PC-oriented) big memory con-
sumptions which prohibit execution on the target hardware.

The results in table 5.1 on page 31 can lead to the following conclusions:

• µSVM performs quite well for small `, even for big n, but greatly loses
performance with the growth of `.

• Growth of n affects operation with error cache much less than without
error cache. This is because kernel evaluations are more expensive with
big n.

• SVMlight is more time efficient than µSVM on PC.

Next, we take a look at the numerical accuracy of µSVM. Therefore the
results of µSVM on PC and SVMlight are compared on the training example

30

5 Results and Discussion 5.2 Speed of Convergence

Example set SVMlight µSVM
on PC

µSVM with
EC

µSVM w/o
EC

EX A.1 0.010s 0.011s 2.7s 3.6s
EX A.2 0.009s 0.009s 2.4s 2.4s
EX A.3 0.010s 0.009s 3.6s 3.2s
EX B.1 0.017s 0.024s 88.2s 234.4s
EX B.2 0.019s 0.029s 170.0s 709.3s
EX B.3 0.018s 0.027s 196.0s 693.2s
EX C.1 0.011s 0.011s 10.8s 93.0s
EX C.2 0.012s 0.011s 13.1s 71.9s
EX C.3 0.012s 0.010s 9.9s 78.5s
EX D.1 0.121s 1.611s > 40.0min −

Table 5.1.: Runtime of SVM implementations

sets and summarized in table 5.2. Stated is the norm of the error vector
v = (λ−λ∗, b−b∗) where (λ, b) is µSVM’s solution and (λ∗, b∗) that of SVMlight.
Also specified is the relative error r = ‖v‖ / ‖(λ∗, b∗)‖. SVMlight was chosen as
the numerical reference implementation because of its excellent reputation in
the community.

Example set absolute error relative error

EX A.1 0.00023377 0.0481%
EX A.2 0.00004444 0.0040%
EX A.3 0.00008987 0.0102%
EX B.1 0.00136866 0.2153%
EX B.2 0.00069989 0.2498%
EX B.3 0.00147428 0.4782%
EX C.1 0.00058508 0.3161%
EX C.2 0.00668395 1.8747%
EX C.3 0.00255609 1.6248%
EX D.1 0.00285187 0.0273%

Table 5.2.: Numerical errors of µSVM

5.2. Speed of Convergence

We investigate how fast the solutions converge to the final result. We therefore
measured the relative error of the intermediate results of the algorithm with
respect to the final values. Some results are depicted in figures 5.1 and 5.2. The

31

5 Results and Discussion 5.2 Speed of Convergence

other examples draw a similar picture. We see that after 20% of the execution
time, the error is less than 10%.

Figure 5.1.: Error progression of EX B.2

Figure 5.2.: Error progression of EX D.1

32

6. Summary

We started with a thorough introduction to convex analysis and derived the
training process for Support Vector Machines. The Karush-Kuhn-Tucker con-
ditions for solving constrained optimization problems, which are of great im-
portance in practice, i. e., in the implementation, were explicitly written out in
their general form and it was explained how these conditions can be applied to
the SVM case.

An important part was generalizing the scalar product in Rn to kernel func-
tions, i. e., functions that are scalar products in some other Hilbert space.
Mecer’s theorem, a sufficient condition for a function to be a kernel function,
was stated and proved in a very general setting (σ-finite measure spaces), which
is probably a novelty in SVM literature.

We then introduced the SVM implementations of Osuna at al., Sequential
Minimal Optimization (SMO) and SVMlight. The SMO method was derived
and investigated in more detail.

After illustrating the concepts of SVM training, we applied them in the
implementation of µSVM. We have shown that despite the limited processing
power and stringent memory space limitations in small microcontroller units, it
is possible to use a fully-fledged SVM there. One problem is the long execution
time of the implementation in the case of a large number of training examples.
The experiments indicate, however, that it is often possible to stop the training
process prematurely and still retain good numerical accuracy.

Future projects could focus on using µSVM in real-life applications or opti-
mizing µSVM on other microcontroller units. Especially ones with more avail-
able memory space.

33

Bibliography

[Bur98] C. Burges. A tutorial on support vector machines for pattern recog-
nition. Data Mining and Knowledge Discovery, 2:121–167, 1998.

[CHL00] C.-C. Chang, C.-W. Hsu, and C.-J. Lin. The analysis of decompo-
sition methods for support vector machines. IEEE Transactions on
Neural Networks, 11(4):1003, July 2000.

[HUL93] J.-B. Hiriart-Urruty and C. Lemaréchal. Convex Analysis and Mini-
mization Algorithms I. Springer, 1993.

[Joa98] T. Joachims. Making large-scale support vector machine learning
practical. In A. Smola B. Schölkopf, C. Burges, editor, Advances in
Kernel Methods: Support Vector Learning. MIT Press, Cambridge,
MA, 1998.

[Mer09] J. Mercer. Functions of positive and negative type, and their connec-
tion with the theory of integral equations. Philos. Trans. Roy. Soc.
London, 209:415–446, 1909.

[OFG97] E. Osuna, R. Freund, and F. Girosi. Improved training algorithm for
support vector machines. Proceedings of the 1997 IEEE Workshop
on Neural Networks for Signal Processing [1997] VII., pages 276–285,
24-26 Sep 1997.

[Pla98] J. Platt. Fast training of support vector machines using sequential
minimal optimization. In A. Smola B. Schölkopf, C. Burges, editor,
Advances in Kernel Methods: Support Vector Learning. MIT Press,
Cambridge, MA, 1998.

[Vap98] V. N. Vapnik. Statistical Learning Theory. Wiley, 1998.

[Wei00] J. Weidmann. Lineare Operatoren in Hilberträumen 1. Teubner, 2000.

34

A. Notation

N . . . set of positive integers
R . . . set of real numbers
R . . .R ∪ {+∞}
Br(x) . . . open ball with radius r and center x, i. e., {x | ‖x‖ < r}
Sn−1 . . . unit sphere in Rn

inf . . . infimum
sup . . . supremum
lim ai . . . limit of the net (ai)i

limx→x0 f(x) . . . limit of the function f at x0

limx↘x0 f(x) . . . right-sided limit of the function f at x0

limx↗x0 f(x) . . . left-sided limit of the function f at x0

∇f(x) . . . gradient of f at x
f ′(x) . . . derivative of f at x
f ′+(x) . . . right-sided derivative of f at x
f ′−(x) . . . left-sided derivative of f at x
Dvf(x) . . . directional derivative of f at x in direction v
∂f(x) . . . subdifferential of f at x
L2(X) . . . space of quadratic integrable real-valued functions on X
`2(I) . . . space of quadratic summable real nets on I
〈x, y〉 . . . inner product of x and y
|x| . . . absolute value of x
‖x‖ . . . norm of x
xT . . . transpose of x
e . . .

∑
1/k!

π . . . Γ(1/2)2

λ . . . Lebesgue measure on Rn

Γ . . . gamma function, x 7→
∫∞

0
tx−1e−tdt

sgn . . . signum function
tanh . . . hyperbolic tangent function

35

B. µSVM Documentation

µSVM is a Support Vector Machine (SVM) implementation for use on micro-
controller units (MCUs). The two main functions are:

• int uSVM train()

• char uSVM classify(float *x)

Their usage is described in the following sections.

B.1. Training

The training process is organized as follows.

1. Write the dimension n of the example vectors into uSVM n.

2. Write the number ` of example vectors into uSVM ell.

3. Allocate memory for n · (` + 1) vector components (either char, int or
float, see B.3) and store the pointer in uSVM x.

4. Allocate memory for ` char variables and store the pointer in uSVM omega.

5. Write example vectors with the uSVM WRITE(i,k,z) macro. Here, the
kth component of the ith vector is written to z.

6. Write labels of example vectors into the uSVM omega array. The values
here can only be +1 and -1.

7. Select the kernel function by setting the uSVM ker function pointer to one
of the functions described in B.1.1.

8. Select the precision uSVM EPS and the penalty paramter uSVM C.

9. Call uSVM train().

The return value of uSVM train() is either -1 in case of an error and the num-
ber of support vectors otherwise. This number is also stored in the uSVM nSV

variable.

36

B µSVM Documentation B.2 Classification

B.1.1. Kernels

Currently available kernels are:

• uSVM scalar: Linear kernel.

• uSVM gauss: Gaussian kernel. The parameter σ can be modified with the
uSVM GAUSS SIGMA macro. Default value is σ = 1

• uSVM poly: Polynomial kernel. The exponent p can be modified with the
uSVM POLY P macro. Default value is p = 3.

B.1.2. Early Termination

It is possible to terminate the training process ahead of time by setting the
flag uSVM terminate. This feature was added because experiments show that
the computed values change only marginally after about 20% of the execution
time.

B.2. Classification

After training, new vectors can be classified by calling uSVM classify(x),
where x is an array of n float values. The return value is either +1 or -1

reflecting the label that is given to the vector by the SVM.

B.3. Compiler Flags

• uSVM X INT and uSVM X FLOAT: These flags select the data type used for
training example vectors. Default is char.

• uSVM NO ERROR CACHE: Disables the use of the error cache. The training
algorithm needs less memory space, but is slower with this flag.

• uSVM GAUSS SIGMA, uSVM POLY P.

B.4. Example

uSVM_ker = uSVM_scalar;

uSVM_n = 5;

37

B µSVM Documentation B.4 Example

uSVM_ell = 5;

uSVM_C = 3.0;

uSVM_EPS = 0.005;

uSVM_x = malloc((uSVM_ell+1)*uSVM_n * sizeof(char));

uSVM_omega = malloc(uSVM_ell * sizeof(char));

uSVM_omega[0] = +1;

uSVM_x[0] = 2;

uSVM_x[1] = -3;

uSVM_x[2] = -1;

uSVM_x[3] = -5;

uSVM_x[4] = 2;

uSVM_omega[1] = -1;

uSVM_x[5] = 2;

uSVM_x[6] = -3;

uSVM_x[7] = 4;

uSVM_x[8] = -2;

uSVM_x[9] = -3;

uSVM_omega[2] = +1;

uSVM_x[10] = -1;

uSVM_x[11] = 0;

uSVM_x[12] = -1;

uSVM_x[13] = 4;

uSVM_x[14] = -5;

uSVM_omega[3] = +1;

uSVM_x[15] = -1;

uSVM_x[16] = 0;

uSVM_x[17] = -1;

uSVM_x[18] = 4;

uSVM_x[19] = -5;

uSVM_omega[4] = -1;

uSVM_x[20] = 1;

uSVM_x[21] = -1;

uSVM_x[22] = -1;

uSVM_x[23] = 4;

uSVM_x[24] = -1;

uSVM_train();

float *z = malloc(uSVM_n * sizeof(float));

z[0]=-1;

z[1]=0;

38

B µSVM Documentation B.4 Example

z[2]=-1;

z[3]=4;

z[4]=-5;

uSVM_classify(z);

free(z);

39

